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SUMMARY

This paper treats the convergence of adaptive LMS filters and, in
particular, the adaptive line enhancer (ALE). The learning curves of
such a filter are a sum of exponentially decaying modes with time con-
stants given by the eigenvalues of the input correlation matrix and the
relative initial magnitudes given by the projections of the filter on the
eigenvectors. It is shown that, for large filter lengths, a simple
correspondence may be set up between the discrete and continuous cases.
Indexed by frequency, the eigenvalues of the correlation matrix correspond
to the magnitude of the power spectrum, and the projections onto the
eigenvectors to the filter transfer function. A detailed analysis is
carried out for single pole spectra and evaluated through a computer simu-
lation. In general, the techniques developed provide a physical context,
i.e., the signal spectrum, in which to evaluate convergence. Thus, it is
possible, with varying degrees of accuracy depending on knowledge of the

input spectrum, to predict the convergence behavior of the system in

general.
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1ie INTRODUCTION

This study investigates the convergence properties of LMS adaptive
filters for a wide class of input spectra, thus extending some results of
[1] and [2]. Utilization of the asymptotic properties of Toeplitz matrices
permits the development of a fairly general theory. More specific conclu-
sions are reached for the case of the adaptive line enhancer (ALE), which
is used both as an introductory example and a concrete application. 1In
particular, a detailed analysis is carried out for single pole spectra
(i.e., a narrowband signal in white noise). Several simplified derivations
of previous results ([2] and [3]) are included in order that the discussion

may remain self-contained.

We begin with a brief description of some basic equations (Section II).
This is followed by a treatment of sinusoids in white noise (Section III),

which is intended to provide some intuition for the theory of Section IV.

In Section IV, it is shown that for large filter lengths, the learning curves

of the discrete LMS filter may be approximated by the continuous case. In
particular, a great deal may be said about the convergence process without
extensive calculations, simply from some knowledge of the input spectrum.
In Section V, the theory is applied to single-pole spectra and evaluated

through a computer simulation.

Simach.




II. BACKGROUND

The convergence time for a linear time invariant system depends, in
general, on the eigenvalues of the system and its initial state. When
adjustable parameters are involved, a coarse indicator of the optimal con-
vergence rate to be obtained is the conditioning number; that is, the ratio
of the largest to the smallest eigenvalue. However, inasmuch as suitably
chosen initial conditions can arbitrarily prolong convergence, any further
statement requires some limitation on the initial state, usually taken to
be zero. This is not so restrictive as may at first appear.

More precisely, consider the implementation of the LMS adaptive filter
pictured in Figure 1. For a stationary input vector X(k), the recursion
equations for the mean of the linear prediction filter, W(k), are given
approximately (W(k) and X(k) are assumed independent for large k - cf
(1], [4D) by {1]

W(k+1) = AW(K) + 2P (1)

where W(k) = EW(k) is the expected value of the L dimensional weight vector

W(k) at time k, and

>
]

I - 2uR

1 - 2uE[x"x]

P = E(dX) , (2)

oy




W(k+1)=W(k)+2ue(k)-X (k)
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Figure 1. Block diagrams of (a) the LMS Adaptive Filter and (b) the Adaptive

Line Enhancer (ALE).
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with k a feedback parameter, R the autocorrelation matrix of the input

process, and P the cross-correlation of the input with the scalar d.

It is easily seen by direct substitution that
k-1

R(k) = A(0) + 2u( £ ad)p (3)
=0

is a solution to (1l). It follows that a necessary and sufficient condition

———————

for (1) to converge for all initial states ﬁ(O) is that the eigenvalues of A

have magnitude less than one; i.e.,

1
Rt (4)
max
where A = maximum eigenvalue of R.
max
In that case,
(e ]
W = 1im W(k) = 2u( £ Ad)p
j=0
-1
= 2u(L - A) P
- &lp, (5)

the well-known solution to the discrete Wiener-Hopf equation.

The terms of equation (3) represent a decomposition of the evolution

of W(k) into the decay of the old state

a%ico)

(6)

bttt t———————
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and the growth of the new state

k-1 j
2u( £ A7)P. (7)
=0
If the new state is substantially different from the old state (i.e., if
its presence is easily distinguished), its detection will depend essentially

on expression (7). This, and considerations of tractability, lead us to

treat only the 'growth rate"; i.e., we set W(0)=0. Equations (3) and (5)

yield
Wk - W(k) = 2u( £ Alp)
i=k
= Akw* (8)
or
| Jwx - W(k)ll2 =l ad)Tadus (9)
The symbol T stands for conjugate transpose and || || indicates the vector

norm. Let Av’ v=1l, .. ., L be the eigenvalues and Ev the corresponding

eigenvectors of R. Then (9) may be written
B 2k |V 2
[we - R0 || = £ (-2 )7 [EY « wk|® . (10)
v=1

Note that the '"*'" represents the scalar product between two vectors.

Equation (10) describes the convergence of W(k) to W*.

o T &% ’ -~ -, - A S '
PR - = RO T

S




DEE————

A similar expression may be derived for the convergence of the mean
square ecror &(k) = E(Ez(k)) (see Figure la) to its limiting value £*, It

is easily shown [1] that, in the absence of gradient noise (i.e., Ly small),

E(k) - £% = (W* - (k) R(W* - W(k))
L

= L (-2uh ) Fav|EVewn| (11)
v=1

The curves (10) and (11) as a function of k will be termed the learning
curves of the filter and output respectively. Each of the L terms relaxes
geometrically with a constant logarithmic slope of log(l—ZuAv)z. Thus, each

term falls to e—1 of its original value in a time given by

£ ¢

1
g = 2
(log(l-ZuAv)
~ ——l—-—-for 2uA . << 1
GuA,, v A (12)
Inequality (4) imposes a lower bound on the largest time constant
i 1
T -
max 4uAmin
Amax
D e ——
) AAmin
= —%— (conditioning number) . (13)

10
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Generally, Tmax is a very conservative estimate for the behavior of
the learning curves. In practice, only those eigenvalues for which the
projection of the final state on the corresponding eigenvector (Ev'w* for
the filter or Ava-w* for the output) is large will exert a significant
influence on convergence. This aspect will be examined in detail in

succeeding sections.

11
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III. SINUSOIDS IN WHITE NOISE (ALE)

In this section we examine the previous theory for the case of M complex
sinusoids in white noise. It is shown that the L-dimensional vector space of
the input may be decomposed into_an M-dimensional subspace spanned by the
signal component and its orthogonal complement. This permits a simpli-
fied calculation of the eigenvalues of_the correlation matrix (equation 26).
Then, by restricting ourselves to the ALE, we find that W* lies in the signal
subspace. It follows that all eigenvectors outside that space are orthogonal
to W* and, hence, their eigenvalues do not enter into ghe learning curves

of equations (10) and (11).

One Sinusoid

Consider the case of a single sine wave in white‘noise x(L)=
VZaz cos (wl+6) + OON(R), where 0 is a uniformly distributed random variable,
and N(%) 1is zero-mean white noise with unit variance. Define the L-dimensional

vector a by

iwl
a, = 0e S PR (R (14)

12




Then the autocorrelation matrix of x is given by

- .
R =R +021
s o

- L@t 1s)
where

5 - okl (16)

Pop = 28,

Let us examine the effect of R on the two-dimensional subspace spanned by

a and a:
{ L % 5
Wby T T L
: /J
‘ba = LO:E
— el 2
W2)y = IaZmd, = (Capa,
3 . o 2
T , da = (Eak)'a' (17)

Thus, the subspacé is invariant (is mapped into itself) under Rs’ and a matrix

representation of Rs in that subspace is

L , L?  1al -_
9 1 8 k '
S R_| s 7 . (18)
R CHRL an L02 i

k 8

13




Note that the eigenvalues of the matrix (18) will also be eigenvalues

of Rs. The characteristic equation is quadratic with roots

%
Ay = =3

(L +|z])

_Eiﬂﬂk~| & (19)

where |Z]| = ]Za:] = | s

Since the columns of Rs are linear combinations of a and a, its rank is at

most two, and the other L-2 eigenvalues must be zero. Hence L-2 eigenvalues

of R are o: and the remaining two are (A+) + O:. Furthermore, it will be

shown in the next subsection that, for the ALE of Figure lb, W* lies in the

subspace spanned by a and a; and, thus, that the "growth" curves only depend

on the eigenvalues A+ + o:. We also note that, for w bounded away from 0

and ™, A

.~ 05 L/2, consequently, the learning curves exhibit a single time

constant,

1
2 L 2
ku(os 2 + oo)

(20)

This is to be contrasted with the estimate of equation (13)

] ; +1) (21)

14




which, although much larger than T except at very small signal-to-noise

ratios, will not be observed when the initial state W(0) is zero (the

mode corresponding to Tg.. is orthogonal to W0)).

M Sinusoids

lt is easy to generalize the foregoing technique to the case of M

sinusoids. Define M vectors as, each of dimension L by

G iwsl
(a )k = 0s e g L ey M

¢ it L L (22)

where v  may be negative in order to include negative frequency components.

Define the LxL matrix

m
£ 88-—8
L %

Q, =
t s=]

2 les(l—k) ’ (23)

-Zo.
-]

We now look for an eigenvector of the form E = ;v;a' with eigenvalue A

i r—-r_ 8
(¢E)l ¥ E X Y‘.av.k.k
L

= ABu

= AEY,-E g (24)

15




Then, since the vectors as are linearly independent, equation (24) implies

ZBrsYs = AY_. (26)

. r

Note that the M-dimensional subspace spanned by the vectors a® is invariant
under ¢, that § is represented by the matrix B with respect to that basis,
and that B has rank M. Since ¢ also has rank M, its remaining L-M eigen-

values are zero.

Also, for the ALE of Figure 1b,

dqL) = chei(wsl+ L

s
x() = d(R) + GON(E)

+ ooN(E)

and
lug(2+6-1) ;
P(L) = Zose 4 (27)
s

a linear combination of the a° (see [3] for details). Thus, Wk = R-lP =

1 s

(I + B) P is also contained in the subspace of the a®. Furthermore, since
¢ is Hermition, those eigenvectors of ¢ not belonging to the matrix B are
orthogonal to the above subspace and hence to W*, We conclude tha; at most,
M eigenvalues are pertinent to the learning curves, and they are solutions

to equation (26).

16
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Example 1

o o
Let a; = i.aiwl; ai =S 10h ppen S = o2 cosw (£ - k) and
/z z s
B is the matrix given in (18).
Example 2 4
BB S E R L I e e
S s B ] R T
_ ]
Then i 1
¢ = olcosml(ﬂ/-k) + ozcoswz(l-k) 5 {
) 4
Let A = wl-wz and w = wl-mz. Then B is given bf ' : )
B= |
2. 2iw iwk !
wz s.0 ZeiAk 012e 1k GIGZZe |
1 12 |
2iw,k
-14k 2 l iwk 2 2
OIO'ZZe L02 . | 01022e oZZe )
=+ ------ o Sivir i (28) ‘
-2iw,k
2 1 -iwk 2 iAk
olze oloz):e | Lol 0102}:e
-2iw,k l
-iwk 2 2 iAk 2 |
Oldzze 02£e ' UIOZZe L02 |
L xk ;L —,2‘_
We note that | L e | = | ——— | which is much less than L for large
k=1 sin -3

L and -:— < x < 2mn - 2/L. Thus, provided

17




the off-diagonal matrices (as indicated by the dotted lines) of the entire
matrix (28) may be neglected (i.e., the positive and negative frequency

components uncouple). The remaining 2x2 matrices are identical and have

eigenvalues

2 2

gy + 0
I 1 2 X 2,2 2.2 2.2 2
)‘i 3 3 £ -2 Vi (0] - 93) + 4|z| 09195

2 . sisl -4 2
where |Z|“ = ( .y (30)
sin-—i-

For AL >> 1; i.e., a large separation of the sinusoids compared to

the filter resolution,

L 2 :
A+ > cx1 AL >> 1
g |
b i T (31)

AL << 1

(o]
A~ — i (32)
1

18




and, if 0, = © A_ reduces to

1 2*
2
o 3.2
1 LA
A_~2 % AL << 1
2 2
0] =05 - (33)
w,+w
Note that (33) could have been obtained from (19) by translating 2 to
W, =W
zero and substituting g = 12 2 for the single frequency w.

For two equal amplitude sinusoids close in frequency, expressions (32)
and (33) are valid. In that case, even in the éignal‘subspace, there may

be a large disparity in the eigenvalues of R = ¢ + aglz

2
A oo(l + qL)

1
3,2
2 LA
where
%
. Sty ‘ (35)
20°

is the signal-to-noise ratio. However, Al or Az will influence the learning
curves only if the corresponding scalar product, E1°H* or Ez-w* is relatively

large (equations (10) and (11)).

The projections of the eigenvectors on W* are computed, up to a constant

factor, in Appendix A with the result

19




3,2
R R R e )

|EZewx|? . 2024 . (36)

1
For large q or relatively large L (note that LA << 1 and LI‘A2 >> 1 can be ;

satisfied simultaneously), the second mode will have a significant effect

on the weight learning curve. Its time constant

1
2 3,2

2 L4
Wt

Ao

(1 + qL) %
132 1
(1+gq 78 )

(37) !

is in general much longer than Ty
To study the output learniag curve, we examine the relative magnitudes of )

2 3,2
}llzl-w*l ~ og(l + qL)(2 + —SLBEL-QZ

3,2

Bt L’A 2,2 4
Azlz Wh| ~ o (1 +q 78 ) 14°L
3,2 :
e L°A 3,2
coqL(l +q 78 ) qLA® (38)

20
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From (38) it is seen that the second mode is relevant only when
qAZL3 > 1. If this condition, somewhat stronger than (36), holds, the
second mode will slow the convergence of the output as well as that of

the weights. These results have been confirmed experimentally [11].

21




IV. THEORY - GENERAL SPECTRA

For the infinite case (L = ), determining the eigenvalues and eigen-
vectors of the autocorrelation matrix reduces to finding its spectrum. In
addition, if the transfer function of the optimal filter is known, it is not
difficult to describe or approximate the learning curves. In this section,
these properties are derived, and it is shown that for large L the convergence
characteristics of the LMS adaptive filter are approximated by those for
L =, A more detailed treatment of the mathematics may be found in

reference [5].

Let the input process x(£) be stationary, and the z-transform [6]

of its autocorrelation function given by

G(z) = b E{x(l)x(k)}zk—2
f-k=nmco

where E denotes expectation. Assume that G(z) is continuous and has no zeroes
or poles on the unit circle. (Note that the sinusoids of the previous section

are a singular case.) Then the power spectrum of x may be written

S(w) = c(el® (40)

22
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and its correlation matrix admits the representation

¢Qk 0 (-k)

E(x(2)x(k))

}i g ik
= _i S(w)e el (41)

Assume further, that the vector P possesses the same properties

m
1 ilw
PQ . _£ Sxd(w)e dw
1 - ifw
- / E(xd)e dw Piar 0] S - (42)
-7

For the ALE, if x is a signal process plus white noise,

T
1 .y =1idw 1wl
Py = _£ Ss(m)e e dw , (43)

The finite LxL matrix of equation (2) may be written

Rop = ¢ (2-k) Bk =10, « A=, (44)

We introduce the infinite dimensional vector norm

o

lyl1? = £ y,2. (45)
£

=0

23
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All L-dimensional vectors may be considered as embedded in this space by

setting those components with indices greater than L equal to zero.

It is shown in Appendix B that W*, the solution of (5) considered as
a function of L, converges to a bounded solution f of the infinite Wiener-

Hopf equation as L +» «; i.e.,

oo
I §u-l)E, = B, g el (46)
k=0
where lim | |w* - £]| =0 .
Lo

We mention here that the matrices R and § are Toeplitz [5] and, as such,
possess the following properties (cf equations (B-4) and (B-9)): Let m and
M be the minimum and maximum of |S(m)| (non-zero and finite by the assumptions

on G(z) ); and let Av’ v=1, . . ., L be the eigenvalues of R. Then

m< A, <M (47)
where Hm A, =m lim A =M. : (48)
Lo min Lo DAxX

In [5] it is also shown that the matrix R is approximated (in a Hilbert-

Schmidt norm) by the matrix R,

~

R

L
" 2TV 1 2miv(L~-k)
2k YEIS( i s, el L (a9)

V

which has eigenvalues S( 2: ) and normalized eigenvectors eZ"ivllL//T:.

24




Thus, if E” are the eigenvectors of R, we have "approximately'
: 21V
b Av ~ 50-77“0 (50)
1 2mive
Y ~ == o e e D i B (51)
VL /L

It is, therefore, not surprising that the following expressions (derived

in Appendix B) hold for the learning curves (10) and (11). Let

e}

Pa) = B £, o WK, (52)
2=0
then
e 2k 2

lim ||w* - f(k)|]|“ = T —f (1-2us (@) )T [F(w) | “dw (53)
Lo .

and

1 o el 2
lin £(K)~E* = —— J(1-2us (W) )“"S(w) |F(w) |“dw . (54)
Lo 4
Note that, heuristically, from equations (50) and (51),
Vg 1 b GEERNEC e Ly Cam o

|[E£|“ v — | L £, e L | ~ —=— |F=—)|%, and that (10) and

L lg® R gl

(11) correspond to approximating sums of the integrals in (53) and (54).

The factor —%T correspcends to gﬁ . Thus, a large value of F(w) will not
be significant unless it has some bandwidth. It is the integrated power

over a given spectral region that is relevant.

25




In summary, for large L,

the eigenvectors are indexed by w,
the wth eigenvalue corresponds to S(w),
and lw*°Ev|2 corresponds to [F(u)l2 g# .

The learning curves for the weight vector and output correspond to a sum of

modes given by

2
[P @) | (1-208 () 2* 52
and |F(w) | 25 (w) (1-2u8 (w)) 2K B2 (55)

2

respectively, where the spectrum has been divided into regions of width

M. The time constant of mode w is thus

2a) = LBy : (56)

Finally, it follows from (47) that the conditioning number approaches

A max S(w)
max W
At min S(w) (57)
w
and the eigenvalues of R satisfy
min S(w) < Av-ﬁ max S(w) . (58)

w w

26
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V. SINGLE-POLE COMPLEX INPUT (ALE)

Using the previous theory, we shall now analyze in detail the learning
1 curves of the ALE of Figure lb for a one-pole complex input signal embedded
in white noise. More precisely, assume the input autocorrelation function

to be of the form

2
o(L) = 082 o2l Jtwgd +0,% 8(R) . (59)
|
The z-transform of the signal alone is given by /
9 :
6 () = 0,2 —I=lal_ (60)
(z-a)(z "-a)

where PP e ; (60)
The transform of ¢ has the form

G(z) = G_(z) + 0,2

s 0
il
e (61)

(z-a) (2=~ )

where b is yet to be determined.

27
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It may be easily shown (cf [8]) by substituting (66) in (61) that

-8 iw

b=e e 0 (62)
02
8 cosh B - cosh a
where 7 T a . (63)
%

Let the signal-to-noise ratio be given by

q=— . (64)

For a << 1 (relatively narrowband) and qoa << 1, we have the approximation

B ~ Va“+2aq. (65)

Let us first compute the conditioning number via expression (57).

From (60), on the unit circle

-2a
e - 2e cos(w-mo) + 1
Also, since
2
S(w) = o. + s.(m). (67)

it is clear that the maximum of S occurs at w = we and the minimum at

W= w, + T,

0
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Thus,

-
A ~0§L+__9____,+0
max § D
-a
2 1-@e 2
A o @ e W O (68)
min sl+ea 0

For a narrowband (compared to Nyquist) signal & << ] and

R 1+ -2
i 1' = 0 << ¥ . (69)
min +
2

If qa is also small,

"“"‘~1+—(§—‘L qo << 1

o TpE (79)

It is easily shown by classical techniques ([9], [10]) that the transfer

function of the optimal filter is given by

cein
F(w) =
BT T S
iu
ce
- (71)
1~ e-B e‘““"“’o)
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where c¢ is a constant. Hence

2 c2
IF|” = o -
1 - 2e cos(uhwo) + e

28 °

Also, from (61) and (62)

-1 )
2 b -b -b
G(Z) = 00 ‘-1 Aiz )(z-l —)
a (z-a)(z "-a)
2 1 - 2e-6cos(w-w ) + e_26
e 0
g Biw) = o0 a -Q -2a
e 1 - 2e cos(m~w0) + e
2 coshB - cos(w-wo)
=0, -

cosha - cos(uhwo)

For small B, the function (72) is very sharp and only the region
[wo-B, wo+8] will influence the integrals (53) and (54). As B increases
the spectrum of F flattens out until we must include the entire interval

[-m, m]. Let B” = B-a. To approximate the learning curves, we divide

(72)

(73)

the interval Wo + 2B” into three regions: (wo -0, Wy + o), (wo ~ 28%-a,

Wy = a), and (wo +a, wy + 28"4+a). They are centered at Wy wo-B, and

mO+B; and have widths (Aw)l = 2a, (Aw)2 = (Aw)3 = 2B8” respectively. This

is shown diagrammatically in Figure 2.

2

For small B and w, cosh B ~ 1 +

may be approximated by

30

2 and cosw ~ 1 -
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f—2(-a) - 2a 2(g-a) -
I I |
“o-g “o “o+p

Figure 2. Diagram of a spectrum partition.

2 82 + (w—mo)z

S(w) ~ O Bl , (74)
0 42 ¥ R )2
0
Likewise, IF(m)l2 is approximately
F@ (? - %ef ——1— B << 1, (75)
B + (wruwp)
The time constants for two of the regions.are the same so that
2 2 2: gt
S(w,) ~a B S(w+B) ~ 0, ——s— (76)
0 0 SEk 0— 0 2 2
a  + B
(v}
2 B8 28
2 c e ; 20 ce
(Bw)  |F(wg) |© ~ 2a——85— 2(0w) , |F(w#B) |© = 4(B-9) o

To simplify the expressions, we will assume that o << 8 (this is the

case except at extremely low signal-to-noise ratios). The substitution of

(76) into (53) and (54) then yields a sum of terms of the form (55). They
are, up to the factor 2c2e-6,

a ¥ @& o g 2 2%
filter: (1 - 2uo Y 4+ (1 - 4uo, ) (77)
S o o2 B 0
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02 2 202 )
2 2k 0 2k
I & (1 - 20, e e 2 (1 - auog ). (78)

e 1 a2
1 2 2
auoo B
and L SR T (79)
2 2 2
auoo

In contrast, since the slower second term in (78) is negligible (for

a << B), the convergence of the output will depend essentially on only one’

2
time constant, Tl = 12 az . Note that a closer approximation (more
4uo B S

modes) to equation (54),0yie1ds a second time constant at W + a:

- 1 - 1 202
T e (S(w + a)) ~ ) ( ). Thus, one would expect the

2 4u = 2

4uoo B

logarithmic slope of the actual learning curve for the output to vary

tetween Tl and 2T1 during the period of significant convergence.

The above results offer the following interpretation. Initially, the
transfer function of the filter will be narrowly centered about ¥ (the
modes w for w close to w, convergence rapidly). With time the filter
widens (the slower modes converge). On the other hand, the output converges

quickly, since for a narrowband signal, there is little error reduction as
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the filter widens. This is particularly true at high SNR (B >>a); the
filter can afford to get quite wide since there is very little noise to
let through. At low SNR the optimal filter is narrow (B ~a), and this

"filter growth'" will not usually be observed.

The same considerations hold for large B (B >1) although the approx-
imation (74) is not valid and must be replaced by (73). For B > 1,
|F2(w)| is approximately constant (equation 72)), all modes are equally
important, and convergence will be limited by the larger time constants.
On the other hand, the modes of the output learniﬁg curve fall off as
S(w) (cf equation (55)), and only those correspond;ng.to |w-—wo|_§2 will

be significant.

A computer simulation of the ALE was run using pseudo-random noise
input with a correlation matrix given by equation (59) and parameters,

L=64, w.=1.5, a=.2, uy=.0008, and B= .915. The results were then

0 02
ensemble-averaged to obtain W. It follows from (63) that SNR = —% = 3.3 dB.

o

0

A plot of equation (56), time constant versus frequency, appears in Fig-
ure 3. It is seen that the fastest mode is about T=30 and the slowest,

t=525. The conditioning number is thus 17.5.
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Figure 3. Plot of time constants of the various modes . )
of convergence for the weight vector (equation (56)): .
a=02,8=0915,u=0.008,02=0.5. &

.

The actual learning curves for the simulation appear in Figures 4
and 5. They are compared with those computed from equations (53) and (54).
(It was found that five modes provided a reasonable approximation to the

integrals, and that anything over ten modes was virtuall} indistinguishable )

from the plotted curves.) The output curves in Figure 5 are in excellent

agreement. There is a very slight discrepancy in the weight vector learn- |
ing curves of Figure 4, which may be attributed to the initial stages of ;
convergence. The independence assumption on which equation (1) is based

is not valid for small k. The ultimate effect is the same as if the initial ‘
state of the ALE, w(0), were not quite 0. In contrast, Figure 5 was con-

structed by matching conditions at k = 50.
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0.225 0.225
0.200 0.200
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0.150 0.150 |4
I
0.125 3 0125
x
o
0.100 “ o100}
1
0.075 0.075 P~ ’
J
0.050 0.060 |- !
0.025 0.025 |-
®
0.000 A 'l L 1 0.000 1 1 ] 1
0.0 2600  500.0 750.0  1000.0 0.0 250.0 5000 7500  1000.0
k 'k )
Figure 4. Learning curves for the weight Figure 5. Learning curves for the output. ‘
vector. Solid Line = computer simula- {Solid Line = theoretical computed from
tion ott‘) I;\Lli:),:ve?ﬁd overha 20-po:11'|t equation (54). Dots = computer simulation
ensemble. Dotted Line = theoretic of ALE, averaged over a 20-poi
curve computed from equation (53). > S polot ensemble.
Since 8= .915 is rather large, one would expect the overall con-
vergence of the weight vector to depend on the slowest mode. From Fig-

ure 3, this is about 500, which corresponds quite well with the simulation
in Figure 4. According to theory, the output should converge faster, de-
pending mostly on those modes for which Iw—wolia- .2. From Figure 3,

this value is T -~ 55 which agrees with the Mk downpoint of Figure 5.
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Note that the scales of Figures 4 and 5 were chosen to give the same

magnitude for k=0, and the more rapid convergence of the output curve

is readily apparent.

Figure 6 plots the spectrum at five different times; k = 25, 50, 100,

250, and 500; plus the spectrum of the optimal filter W*. As expected, the

filter grows and widens with time. A more dramatic example is pictured in

Figure 7. 1In this case, the simulation was run with a real input signal

o) = o’ s

2 .
Os /200 = 15 dB.

IFlw) |2

cosw

0.50
0.45
0.40
0.3
0.30
0.26

0.20

2
0% + 00 A(2) at a signal-to-noise ratio of

w = 2nf

Figure 6. Power spectrum of \V(k) for five dif-
ferent times (k = 25, 50, 100, 250, and 500),
and the optimal weight vector W*(k=°). The
input correlation function of the ALE was given
by equation (59) witha=0.2,=0.915, L = 64,
Wy =1.5,and u = 0.0008. The results were
averaged over a 100-point ensemble.
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3.1400
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Figure 7. Power spectrum of W(k) at three dif-
ferent times (k=160, 320, and 640). The input
correlation function was o% e“’l”zl1 €os Wk +

‘03 witha=02,8=201,L=64, w, = 1.5,
and 4 = 0.0016. The results were averaged
,over a 200-point ensemble.

Finally, it should be recalled that the theory of the previous sec-

tion is an approximation for large L (L= 64 in the above simulation). For

the case of a signal pole spectrum, we can explizitly derive the asymptotic

dependence of the eig

envalues on L. From [5], the eigenvalues of Rs

(matrix (59) with 00-0) satisfy

fl(,\l

U

< S(HD Sy S S

L+l
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: ™ -0
X = v] 3 6 —_ =
Let 1 cosb , X, cos ( % + L+l)’ and r e . Then the error in

estimating Av is bounded by

1 - 1 i bet Al B i W o

1+ r2 - 2rx1 I8 2 rz - 21:x2 (l+r2—2rx1)(1+r2—2rx

)
- (x,-%,)8,_(x)S_(x,); o<1, <

m

But S_(x)) = A ~ S_(x,); |x1-x2| ~ — cos6 . Thus

error < —Ezi— ﬂki 5 (81)

Except for very large eigenvalues, the percentage error will be small when
Lo > 1; i.e., provided the signal is wider than the ALE resolution. For J ‘
the other extreme, L & << 1, the narrowband signal will appear essentially j

sinusoid.
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VI. CONCLUSION

We have examined the convergence of LMS adaptive filters as reflected
by the weight vector and filter output. These curves are a sum of modes
with decay constants equal to the eigenvalues of the input correlation
matrix. It was shown that, for zero initial conditions, the importance of
a particular mode depends on the projection of.its eigenvector onto the optimal
filter W*. For example, in the case of the adaptive line enhancer with an
input of M sinusoids in white noise, only the M-dimensional '"signal subspace" . J

is relevant to convergence time.

One and two sinusoids were treated in detail.. It was shown that a
single real sinusoid (two complex) has two pertinent éigenvalues (M equals
2), and that they are approximately equal. Consequently, convergence is often
much quicker than would be expected from an examination of all the eigenvalues.
The behavior for two sinusoids (four complex) depends on the separation of
their frequencies. If they are relatively close, there can be a large
disparity in the eigenvalues even in the signal subspace (equation (37)).
The associated eigenvectors were examined, and it was found that there exist

circumstances under which the slower mode may dominate the learning curve.
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A simple correspondence may be set up, for large filter lengths,
between the discrete and continuous cases. Indexed by frequency, the
eigenvalues of the correlation matrix correspond to the magnitude of the
power spectrum, and the projections of their eigenvectors on W* correspond
to the magnitude of the filter transfer function. Obvious though this relation-
ship may be, it provides a powerful means of approximating the LMS learning
curves. A rough knowledge of the input spectrum suffices to evaluate the
conditioning number and thus set bounds on convergence (equation 57) ). A
small amount of additi;;al analysis yields approximations to the learning

curves (equations (53) and (54) ).

As an example, we treated the case of a single pole input spectrum.
Simple expressions relating bandwidth, SNR, and approxi@gte convergence
times were derived (equation (79) ). In general, the convergence of the
output is faster than that of the weight vector. This is particularly
noticeable at high signal-to-noise ratios. It was also observed that the filter
is initially narrow and widens with time (during convergence). The more
exact expressions for the learning curves, equations (53) and (54) were then
evaluated numerically and proved in excellent agrgement with a computer

simulation.

The techniques which we have developed often alleviate the need for
finding the eigenvalues of large matrices in order to analyze the learning
curves. In addition, they provide a physical context, the signal spectrum,
in which to evaluate convergence. Thus, it is possible, with varying degrees
of accuracy dependent on knowledge of the input spectrum, to predict the

convergence behavior of the system in question.
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We are concerned with the eigenvectors of the submatrix

1
e o

Ny~

Z
L

which has eigenvalues

LEL. M en]y |
LRl o5 e
where
z-l'iAL
iA -

Up to order A2,

APPENDIX A

2
B8
2L+ -
A, ~ L
A"'00

1
Let (b) be eigenvectors of B, then

3 (‘l’:) T% (‘1’:

|
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(A-2)

(A-3)

(a-4)
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which implies

and, hence,

1AL

b+~1_—2_
1AL

b ~ k=g

(A-5)

(A-6)

2
We now calculate W*. From equation (27), with o, =

2
1 Oy » § =1, and
1

Wy ~ Wys P in the current basis is proportional to (1). Also, R is given

by
R = og + of B = 02 ltLq ¥
qZ 1+Lq
where
2
ik
qim .
200

Finally, W* = R-IP is proportional to

14Lq -q2 (1) 5 l+Lq-qZ)
—qi 14+4Lq 1 1+Lq-qi

g 1qAL2

1 2

2

iqAL *

1+ 2
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Define

+

sodEl T il L

so that ||E+|| = ||E"!|. Then, up to a constant factor
+ 2 13%g .2
|[ET » wx|“ . 2+ ___7;J1_) (A-10)
2,2 4

|E™ - we|? . g%

where AL << 1 .
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APPENDIX B

For mathematical background and material related to the subject
matter in this appendix, the reader is referred to references [5] - [8].

We proceed to prove relation (46).

Define the strong matrix norm by

- sup Ax ' &
[la]| = =op A= | 1)

It follows from this definition [7] that the norm of a finite dimensional

Hermitian matrix B is given by

IBIT = A, : (B-2)

= maximum eigenvalue of B .

[+ ]

Let y be a vector in 22, f.8¢y, L yi < o, then there exists Y(w), the
2=0

inverse transform of y, such that

n
: et [ 1wl %
"5 [“ Y(w)e dw . . (B-3)

The convolution theorem for Fourier series and Plancherel's theorem imply




w

= AR e
Ilkzo¢2kykll = 2=0 Q)

1
2

Thus

1101] = sup [1oy][/1]yl]

¥

= max [S(w)| .
w

m
- g £n IY(w)lz lS(w)|2 dw .

(B-4)

(B-5)

Let RL be the operator ¢ restricted to the L-dimensional subspace of

the first L basis vectors:

. L-1 A
R7y), = y L < L-1
P L

o

(B-6)

Thus, RL is identical to R of equation (44). If we define the projection

operator QL by

@y, = v, : L < L-1

then

RL i QL ) QL i
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Thus,

REL < [1Q% 1ol 11e¥||

= |1o|] . (B-8)

Similar expressions hold for the infinum of RL and :

; 7
L Ryl
)\ = min J*Tﬁ_l‘
min y y *
= min ||$LQ$Lz;|
y ¥y !

= min |S(w)]| (from (B-4) ) | (B-9)

It was assumed that G(2) has no zeroes on the unit circle; thus, we may

write min |S(w)| = a > 0. Then
w

lI(RL)-III = max eigenvalue (RL)-l

e (B-10)
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Also, it follows from (B-5) and (B-9) (cf [8] that ¢_1 exists and is bounded.

Finally, we note that RE converges weakly to §; i.e., that

iim || @®"-d)y|| = 0 vy | (B-11)
1o

This follows from

H®R"0)yl| = |lQ"dQ"y-¢y]| b

| 1™ @™y + @ ¢-0)y]| 1

lo@™-Dy|| + || @"-Déy||

A

Holl 11@" Dyl + |]@*-Doy|]| (B-12)

A

and the fact that

o 2 ‘i
L Yy
L=1L

[1e~1)y]|?

converges to zero as L + »

£
Let WL be the solution of the L-dimensional Wiener-Hopf equation (5)

W = @’ lolp (B-13) ;

where P is defined by (42). Let f = ¢ 'P and P* = Q"P. Then
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He-wl] = 1107 - @M7IRY|
' <O - @ e+ (T b || |
N Also,
™ - ®@7hell = [T&H ™ @597 || '
< H&H™] | Rpe] ]
Hence, *
He-wh | < = (H@®™os] | + [|e-Y]]), ;
. and (B-12) implies ) :
) n |1e-w“|| = 0. (B-14) |

-__‘_____He.nnu-pfeve (53) and (54). Let
/

A = 1-2u¢
A= 1—2pRL. (B-15)

Then the substitution of A and A for ¢ and R plus an induction on the

inequality (B-12) implies that Ak converges weakly to Ak and thus

1m | [a% (] = [1&%]] . (B-16)
Lo

.
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Also,
1K) < | akub - ake || + ||a%E - a%|| + |8 .
Hence,

I L LR (B-17)
L2

But the convolution theorem implies :

m
~k 3 1 k iw(f-m)
3 PO e -£ (1-2us(w) ) “e dw (B-18)
and Plancherel's theorem gives
" 2 G 2k 2
il b (1-2us(w)) < |F(w) | “dw (B-19) d
-

with F(w) defined as in (52). Substitution of (8) and (B-19) into (B-17)
yields equation (53). A similar calculation using (8) and (11) gives }

equation (54).
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